American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronic Circuits
Spring 2011
Midterm - April 8, 2011
Open Book-120 minutes

NAME:

\qquad ID Number: \qquad

* All questions are equally graded
* PENALTY is four-to-one (four wrong answers cancel one correct answer, one to three wrong answers have no effect)
* Grading is based on the answers marked on the SCANTRON sheet only.

Assume that:

- $\quad V_{\mathrm{BE}(\text { active })}=0.7 \mathrm{~V} \quad V_{\text {CE(edge of sat) }}=0.3 \mathrm{~V}$
- $\quad V_{\mathrm{T}}=25 \mathrm{mV}$
- MOSFET channel-length modulation and BJT Early effect can be neglected during DC analysis.
- MOSFET channel-length modulation and BJT Early effect
can be neglected in small-signal analysis, unless you are specifically requested to include them.

1. Consider the transfer function:

$$
F_{H}(s)=\frac{1-\frac{s}{10^{6}}}{\left(1+\frac{s}{5 \times 10^{3}}\right)\left(1+\frac{s}{5 \times 10^{5}}\right)\left(1+\frac{s}{6 \times 10^{6}}\right)}
$$

Find the $3-\mathrm{dB}$ frequency (in Hz) using the most appropriate method.
a) 795.8
b) 159.2
c) 318.3
d) 477.5
e) 636.6
2. Consider the transfer function:

$$
F_{H}(s)=\frac{1-\frac{s}{2400}}{\left(1+\frac{s}{2000}\right)\left(1+\frac{s}{4000}\right)}
$$

Find the exact value of the $3-\mathrm{dB}$ frequency (in krad/s).
a) 1.77
b) 2.37
c) 6.21
d) 3.03
e) 1.87
3. Given the following asymptotic Bode plot of a 3-pole no-zero transfer function $H(s)$, with poles at $\omega_{\mathrm{A}}=10 \mathrm{rad} / \mathrm{s}, \omega_{\mathrm{B}}=30 \mathrm{rad} / \mathrm{s}$, and $\omega_{\mathrm{C}}=40 \mathrm{rad} / \mathrm{s}$.

What is the slope of segment CD?
a) $-40 \mathrm{~dB} /$ decade
b) $-60 \mathrm{~dB} /$ decade
c) $-20 \mathrm{~dB} /$ decade
d) $-15 \mathrm{~dB} /$ octave
e) $-12 \mathrm{~dB} /$ octave
4. Find X (in dB) in the previous problem if $Y=32 \mathrm{~dB}$.
a) 43.5
b) 10.5
c) 15.5
d) 37.5
e) 22.5
5. Using the Open-Circuit Time Constants (OCTC) method, the 3-dB frequency for the amplifier whose small-signal equivalent circuit is shown below was found to be 100 kHz . Find the value of the capacitor $C_{\mathrm{X}}($ in pF$)$. Assume $g_{\mathrm{m}}=4 \mathrm{~mA} / \mathrm{V}$.

a) 28.6
b) 32.5
c) 55.0
d) 37.6
e) 44.7
6. In the circuit of the previous problem, and after using Miller's theorem, the total capacitance on the input side of the circuit was found to be 120 pF . Find the value of the capacitor C_{X} (in pF). Assume $g_{\mathrm{m}}=4 \mathrm{~mA} / \mathrm{V}$.
Note: Miller's constant K is calculated assuming all capacitors are open circuits.
a) 2.09
b) 2.90
c) 2.43
d) 4.76
e) 3.61
7. The amplifier shown in the figure below is a common-

a) source
b) gate
c) drain
d) base
e) collector
8. Find the voltage gain (in absolute value) of the amplifier in the previous problem, $v_{\mathrm{out}} / v_{\mathrm{in}}$, if $g_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$ for the MOSFET, $R=11 \mathrm{k} \Omega$ and $R_{\mathrm{X}}=100 \Omega$. Assume that all capacitors are very large with negligible impedance at signal frequencies. Also assume that R_{f} is a very large resistor.
a) 2.3
b) 3.2
c) 4.1
d) 5.0
e) 5.9
9. The voltage at the emitter of transistor Q_{1} in the current source circuit shown below was measured to be 0.26 V . Find the minimum output voltage (in V) to maintain current source operation for the circuit.

a) 2.4
b) 0.43
c) 0.56
d) 0.9
e) 1.5
10. Find the output resistance (in $\mathrm{M} \Omega$) of the current source in the previous problem. For the BJT, $\beta=100$, and the Early voltage is $50 \mathrm{~V} . \mathrm{V}_{\mathrm{BIAS}}$ is a pure DC source.
a) 1.4
b) 1.1
c) 2.3
d) 2.0
e) 1.7

Questions 11 to 16: The CC-CE pair shown below uses transistors that are biased such that for both BJTs, $g_{\mathrm{m}}=25 \mathrm{~mA} / \mathrm{V}, \beta=90$, and $r_{\mathrm{o}}=100 \mathrm{k} \Omega$. The two current sources used to bias the BJTs have small-signal output resistances equal to $50 \mathrm{k} \Omega$. The signal source resistance is $R_{\text {sig }}=100 \mathrm{k} \Omega$.

11. Find the gain of the CE stage, $v_{\text {out }} / v_{\mathrm{x}}$.
a) -833.3
b) -1000
c) -333.3
d) -500
e) -666.7
12. Find the input resistance of the CE stage, $v_{\mathrm{x}} / i_{\mathrm{b} 2}$ (in $\mathrm{k} \Omega$).
a) 3.0
b) 9.0
c) 6.0
d) 4.5
e) 3.6
13. Find the input resistance of the amplifier, $v_{\mathrm{i}} / i_{\mathrm{i}}(\mathrm{in} \mathrm{k} \Omega)$.
a) 365.3
b) 253.4
c) 299.3
d) 653.9
e) 468.7
14. Find output resistance of the amplifier (in $\mathrm{k} \Omega$).
a) 50
b) 33.3
c) 100
d) 20.6
e) 67.5
15. Using OCTC, find the resistance seen by C_{π} of $\operatorname{transistor} \mathrm{Q}_{2}$ (in Ω).
a) 1025
b) 948
c) 890
d) 843
e) 802
16. Using OCTC, find the resistance seen by C_{μ} of transistor $\mathrm{Q}_{1}($ in $\mathrm{k} \Omega)$.
a) 82.4
b) 78.5
c) 74.9
d) 71.7
e) 86.7
17. The op-amp in the circuit shown produces an output voltage in the range -10 V to +10 V . The maximum output current $i_{o(\max)}$ is 10 mA . The slew-rate of the op-amp is specified to be $10 \mathrm{~V} / \mu \mathrm{s}$. Assuming $R=500 \Omega$ and $v_{\mathrm{i}}=2 \sin (100 t) \mathrm{V}$, what is the maximum value of $v_{\mathrm{o}}($ in V$)$?

a) 1.67
b) 2.31
c) 2.86
d) 3.33
e) 3.75

Questions 18 to 22: Consider the amplifier circuit shown below. The bias currents are chosen such that for the BJT, $g_{\mathrm{m} 1}=4 \mathrm{~mA} / \mathrm{V}, r_{\mathrm{o} 1}=500 \mathrm{k} \Omega$, while for the MOSFET, $g_{\mathrm{m} 2}=0.11 \mathrm{~mA} / \mathrm{V}$, $r_{\mathrm{o} 2}=100 \mathrm{k} \Omega$. The small-signal output resistance of the $2 I$ current source is $r_{\mathrm{o} 1}$, while the I current source biasing the MOSFET is ideal.

18. Find the output resistance of the amplifier (in $M \Omega$).
a) 3.35
b) 3.60
c) 3.85
d) 3.10
e) 2.85
19. Find the voltage gain of the second stage, $v_{\text {out }} / v_{\mathrm{x}}$.
a) 15
b) 12
c) 13
d) 14
e) 11
20. Find the gain of the first stage, $v_{\mathrm{x}} / v_{\mathrm{in}}$.
a) -1000
b) 1000
c) -1500
d) 2000
e) -2000
21. Use the OCTC method to find the 3-dB frequency of the amplifier circuit. Let $C_{\mathrm{X}}=5 \mathrm{pF}$ be the equivalent capacitance at the collector node of the BJT to ground. Neglecting the effect of all other capacitances, find $\omega_{3-\mathrm{dB}}$ (in Mrad/s).
a) 0.5
b) 4
c) 2
d) 1
e) 0.8
22. Assume now that for the MOSFET $k^{\prime} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{\mathrm{t}}=-1 \mathrm{~V}$. Let $I=360 \mu \mathrm{~A}$ and $V_{\mathrm{BIAS}}=1 \mathrm{~V}$. Find the value of V_{CE} for the BJT (in V).
Hint: Start by finding V_{GS} of the MOSFET.
a) 2.51
b) 2.60
c) 2.40
d) 2.14
e) 2.28

